A "scale" can be described as that set of pitches to which a musician limits themselves in the creation of a melody, in some given musical context, or even in an entire piece. That set of pitches is determined by a combination of the musical-culture in which the musician lives, the idiosyncrasies of the instruments at their disposal, and the musician's personal choices.

Even a cursory investigation of human music across space (different locales around the world) and time (down through history) shows that one way of giving a style of music a unique character is the use of different scales. For example, the "blues scale" is one important element of what gives the "blues" its unique character, and the unique scales of the gamelan are an important element of that genre.

Humans have used countless different scales in the creation of their music. The question naturally arises how many possible scales there might be. If we admit of any possible tuning system on any possible musical instrument, the number of possible scales is of course infinite. But if we limit ourselves to, say, the standard pitch set of Western music for the past couple centuries — the equal-tempered piano keyboard — it is possible to determine a finite number, and to enumerate all the possible scales. That is the purpose of this website.

"Octave equivalence"^{1} being a virtually universal principal of human
music, it is common practice to assume that a scale is a set of pitches * within an octave span * to which
a musician limits themselves, the tacit assumption being that the same intervalic pattern of pitches is repeated
at the octaves as desired. Thus the "C-major scale" can start on a "C" in any octave you
choose — the intervalic pattern of whole and half steps is always the same. ^{2}

On this website I limit myself to the Western equal-tempered chromatic scale, not because there is something 'sacred' about that tuning system, but because it is so ubiquitous, and because the point of this website is to show that even with that 'severe' limitation it is easy to show that we haven't begun to explore the musical possibilities of even that limited system.

So, we'll find it convenient to unambiguously describe a scale by the number of semitones required for each degree (step). For example, the major scale is 2,2,1,2,2,2,1 — starting on any given note (the first "degree"), the second degree is 2 semitones above the first, the third is 2 semitones above the second, the fourth is 1 semitone above the third, and so on.

2 | 2 | 1 | 2 | 2 | 2 | 1 |

Furthermore, we may want to consider (and possibly limit) the distance between any two successive degrees of a scale. In the major scale (2,2,1,2,2,2,1), that largest step is 2 semitones, or a whole step. In the pentatonic scale (2,3,2,2) the maximum step size is 3 semitones, or a minor third:

2 | 2 | 3 | 2 | 3 |

We will call this the "leap" of a scale (that is, a scale's "largest step" is its "leap"). So the leap of the pentatonic scale is 3.

Finally, many scales are related to each other by being * modes * of each other. For example, if our scale
is the "white notes" on the piano keyboard (also known as the "diatonic scale"), seven modes
can be obtained: the first by beginning on C (CDEFGABC), the second by beginning on D (DEFGABCD), and so forth.
(This particular set of modes is known as the "ecclesiastical modes".) Thus seven modes can be
unambiguously described by the one diatonic scale, with the understanding that the modes are derived by
beginning each mode on each of the seven degrees of the scale. Modes which are related by being modes of each
other are called "siblings" of each other. Thus the Dorian ecclesiastical mode is a sibling of the
Locrian ecclesiastical mode.

In the list of scales, the name of the mode appears under the degree with which you'd start. Thus, for the ecclesiastical modes, we'd have:

Lydian | Mixolydian | Aeolian | Locrian | Ionian | Dorian | Phyrgian |

There are scales containing modes that are identical to each other. For example, the "diminished" scale:

2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |

This scale actually only two unique modes: 2,1,2,1,2,1,2,1 (if you start on an odd degree of the scale) and 1,2,1,2,1,2,1,2 (if you start on an even degree of the scale). These are called "symmetric" scales and will be discussed later.

Here is a table which lists the possible unique modes and scales, based on the equal-tempered Western chromatic scale:

Leap | Scales | Modes |

1 | 1 | 1 |

2 | 31 | 232 |

3 | 132 | 926 |

4 | 228 | 1489 |

In other words, limiting ourselves to a leap of 4 semitones, and assuming the Western equal-tempered octave, there are 228 possible scales and 1489 possible modes based on those scales. If we relax any of our limitations — octave equivalence, Western equal-tempered tuning, a leap of 4 — the number of possible scales and modes is of course much greater. (This does not include transposing each of the modes to the other 11 "keys", which increases the number of possibilities by a factor of 12).

Since any N–note scale has "N" modes (apart from symmetry considerations), we can reduce the physical list of our scales considerably by only including one scale to represent all the modes readily derived from that scale. But — how to choose the one mode to represent all of its siblings? Consider the modes of the diatonic scale:

Ionian 2773 |
Dorian 2902 |
Phrygian 3418 |
Lydian 2741 |
Mixolydian 2774 |
Aeolian 2906 |
Locrian 3434 |

Suppose we want to uniquely identify each mode by a number (handy for computers!). 'Binary' is a way of counting that only uses the digits '0' and '1'. So we can use a 12-digit binary number to represent a mode, where the twelve digits correspond to the twelve steps of the chromatic scale, and '1' means 'include the note' and '0' means 'don't'. Then, for the Ionian (Major) mode we would have:

C | C# | D | D# | E | F | F# | G | G# | A | A# | B |

1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

Or:

101011010101 (binary)

If one converts this binary number to our usual base-10, the result is 2773. So in our example, the number listed under the mode label 'Ionian' is 2773.

Or one can express it in 'hexadecimal' — base 16, a convenient way of working with binary numbers. (See Wikipedia). A common way to indicate a hexadecimal number is to prefix it with '0x'. So, using our example of the major scale, 2773 (base 10) equals 0xAD5 (base 16).

You'll notice, however, that we're deriving the 'canonic mode number' by assigning the lowest note in the scale the most significant place in the number. (In the decimal number '123', '1' is in the most significant place — the 100's place whereas '3' is in the least significant place — the 1's place.) Instead of assigning the lowest note to the most significant binary place, one could instead assign the lowest note to the least significant binary place. Using the major scale example again, that would like:

C | B | Bb | A | G# | G | F# | F | E | Eb | D | Db |

1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |

Or:

110101011010 (binary)

This is just like the issue in computer engineering of 'big-endian' vs. 'little-endian' (see Wikipedia). So let's agree:

For **Big-endian** the highest notes are in the least significant places of our binary representation.
If one reads the binary representation of the scale left-to-right, this amounts to using an *ascending*
scale when determining 1's and 0's.

For **Little-endian** the **L**owest notes are in the **L**east significant places (notice the alliteration of L's).
If one reads the binary representation of the scale left-to-right, this amounts to using a *descending*
scale when determining 1's and 0's.

Since the note a perfect fifth above the seventh degree of this scale is not also in the scale, we say that this
degree is ** imperfect. ** The number of perfect modes in a scale is its **perfections**, and the
number of imperfect modes is its **imperfections**. Obviously "perfections + imperfections = N–notes".

And the pentatonic scale has 4 perfections:

There's only one scale with 0 imperfections (that is, perfections = N–notes) — the complete 12-note chromatic scale:

Interestingly, the diatonic scale is the only 7-note scale with only one imperfection (with a leap of 4 or less). The only other scales with only one imperfection are those that are super and subsets of the diatonic scale.

Of the 7-note scales with a leap of 2 semitones (like the diatonic scale), there are none with only 2 imperfections, only one with 3 imperfections – the "ascending melodic minor" scale:

and only one with 4 imperfections – the "harmonic minor" scale:

Here are tables listing the number of scales (with a leap of 4) having a given number of perfections and imperfections:

Number of Perfections | ||||||||||||||

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total Scales | |

3-note scale | 1 | 0 | ||||||||||||

4-note scale | 3 | 4 | 2 | 9 | ||||||||||

5-note scale | 1 | 8 | 15 | 6 | 1 | 31 | ||||||||

6-note scale | 1 | 2 | 18 | 25 | 12 | 1 | 59 | |||||||

7-note scale | 2 | 16 | 28 | 12 | 1 | 59 | ||||||||

8-note scale | 9 | 21 | 11 | 1 | 42 | |||||||||

9-note scale | 10 | 8 | 1 | 19 | ||||||||||

10-note scale | 5 | 1 | 6 | |||||||||||

11-note scale | 1 | 1 | ||||||||||||

12-note scale | 1 | 1 | ||||||||||||

Total Scales | 6 | 14 | 37 | 47 | 50 | 34 | 22 | 9 | 6 | 1 | 1 | 0 | 1 | 228 |

Total Modes | 0 | 14 | 74 | 141 | 200 | 170 | 28 | 63 | 48 | 9 | 10 | 0 | 12 | 769 |

Number of Imperfections | ||||||||

0 | 1 | 2 | 3 | 4 | 5 | 6 | Total | |

3-note scale | 1 | 1 | ||||||

4-note scale | 2 | 4 | 3 | 9 | ||||

5-note scale | 1 | 6 | 15 | 8 | 1 | 31 | ||

6-note scale | 1 | 12 | 25 | 18 | 2 | 1 | 59 | |

7-note scale | 1 | 12 | 28 | 16 | 2 | 59 | ||

8-note scale | 1 | 11 | 21 | 9 | 42 | |||

9-note scale | 1 | 8 | 10 | 19 | ||||

10-note scale | 1 | 5 | 6 | |||||

11-note scale | 1 | 1 | ||||||

12-note scale | 1 | 1 | ||||||

Total Scales | 1 | 7 | 56 | 104 | 54 | 5 | 1 | 228 |

Total Modes | 0 | 7 | 112 | 312 | 216 | 25 | 6 | 678 |

In this website, the scales are listed in order of perfection (most perfect first), with the perfect degrees in each scale indicated by whole notes and the imperfect degrees indicated by sold notes (as in the examples above).

Ionian (aka "major") | 2,2,1,2,2,2,1 |

Dorian | 2,1,2,2,2,1,2 |

Phyrigain | 1,2,2,2,1,2,2 |

Lydian | 2,2,2,1,2,2,1 |

Mixolydian | 2,2,1,2,2,1,2 |

Aeolian (aka "minor") | 2,1,2,2,1,2,2 |

Locrian | 1,2,2,1,2,2,1 |

But there are scales where more than one mode is intervallically identical. For example, consider the diminished scale:

2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |

All the modes starting on odd degrees are intervallically identical (1,3,5,7). Namely, if you start on degree 1, 3, 5 or 7, the intervals of the scale are 2,1,2,1,2,1,2. Likewise all the modes starting on even degrees are intervalically identical (2,4,6,8) – the intervals of the scale are 1,2,1,2,1,2,1. So the diminished scale only has 2 unique modes, even though it has 8 degrees.

Since the pattern repeats every 3 semitones, we say that the diminished scale is "symmetric at 3 semitones" or "symmetric at the minor third."

The whole tone scale only has one mode, even though it has 6 degrees in the scale. It is symmetric at 2 semitones (or a whole step).

2 | 2 | 2 | 2 | 2 |

Clearly a symmetric scale can only symmetric at an even divisor of 12, so we can only have scales symmetric at 2, 3, 4 and 6 semitones. Following is a table showing the number of symmetric scales (with a leap of 4 or less):

Degrees in scale |
Symmetric at 1 semitone |
Symmetric at 2 semitones |
Symmetric at 3 semitones |
Symmetric at 4 semitones |
Symmetric at 6 semitones |
Total |

3 | 1 | 1 | ||||

4 | 1 | 1 | 2 | |||

5 | 0 | |||||

6 | 1 | 1 | 3 | 5 | ||

7 | 0 | |||||

8 | 1 | 2 | 3 | |||

9 | 1 | 1 | ||||

10 | 1 | 1 | ||||

11 | 0 | |||||

12 | 1 | |||||

Total | 1 | 1 | 2 | 3 | 7 | 14 |

In this website, the scales are listed in order of number of perfections (most first), with the perfect degrees in each scale indicated by whole notes and the imperfect degrees indicated by sold notes (as in the examples above).

So, it would seem that all the animals in our modal musical garden need names. Therefore I have named them. There is at least this pattern: all the names of the 5-note names end in "-atonic" (for example, the "Pentatonic"), all the names of the 7-note scales end in "-ian" (for example, "Dorian"), and so on:

end in... | |

4-note modes | "-ic" |

5-note modes | "-itonic" |

6-note modes | "-imic" |

7-note modes | "-ian" |

8-note modes | "-yllic" |

9-note modes | "-ygic" |

10-note modes | "-yllian" |

11-note modes | "-atic" |

This naming convention was designed to preserve and be consistent with the common names "pentatonic" and the names of the ecclesiastical modes.

Copyright © 2000–2024 William Zeitler

WilliamZeitler.com

WilliamZeitler.com